Asphalt Study Guide

<u>Terminology</u>

1)	Pb is the of the asphalt mixture.
2)	Gmb is the specific gravity of the
3)	Gmm is the theoretical specific gravity of the
4)	Gse is the specific gravity of the
5)	VMA stands for the in the aggregate.
<u>Mix Desi</u>	ign and Verification
6)	The values calculated for VMA $_{\rm eff}$ are used when determining compliance with field
	specifications on an ARDOT project. True False
7)	The optimum binder content shown on the mix design is used in all calculations during
	production. True False
8)	Two temperatures needed for field quality control which can be found on the ARDOT mix
	design are the temperature and the
	temperature.
9)	The VMA correction factor is found on the ARDOT mix design. True False
10)	PG 76-22 and PG 70-22 binders can be used interchangeably. True False
11)	For quality control/quality assurance testing, asphalt specimens are compacted in the
	gyratory compactor to gyrations.
12)	The Asphalt Pavement Analyzer (APA) is used to test for
13)	The Ideal-CT test is used for testing a mixture's resistance to
	·
14)	Mixes designed by the balanced mix design method may have different field compliance
	limits than traditional mixes. True False
15)	A mix design verification is required at the start of mix production or after an interruption
	of more than days.
16)	If the first mix verification is unsuccessful, the binder content may be adjusted.
	True False

Applications

- 17) Application rate is the ______ of asphalt needed to cover a square yard in order to produce the required ______ of pavement.
- 18) Application rates are generally found on the job _____.
- 19) One inch of asphalt thickness is roughly equivalent to a rate of ______ lb/sy

Specifications

- Standard specifications always supersede supplemental specifications and special provisions. True False
- 22) In the ARDOT quality system for most mixes, a "lot" of asphalt mix is ______ tons and a "sublot" of asphalt mix is ______ tons.
- 23) For typical mixes, field compliance limits for binder content are ± _____ percent.
- 24) Pay items for an ARDOT asphalt paving project are % binder, % ______,
 % ______, and % ______.
- 25) The standard ARDOT specification for % compaction is ______% to _____% for normal travel surfaces and widths.

Sampling Asphalt Mixtures

26) When sampling from a truck, you must gather your field sample from a minimum of

_____ different locations within the truck.

27) When transporting asphalt samples, avoid contamination, ______ of material, and ______ loss.

Reduction of HMA Samples to Testing Size

28) The equipment used in reducing samples may be heated up to the maximum

_____ temperature to help reduce temperature loss.

- 29) WD-40 or diesel oil may be used as a release agent to coat reduction equipment.True False
- 30) Reduction of samples to testing size may be accomplished using a mechanical

_____, the quartering method, or the incremental method.

Gyratory Compaction

- 31) The gyratory compactor must be able to exert ______ ± _____ kPa of force to a specimen after the first five gyrations.
- 32) The internal angle required by AASHTO T 312 for a gyratory compactor is
 <u>+ 0.02 degrees.</u>
- 33) The speed of gyration during compaction is required to be ______ ± 0.5 gyrations per minute.
- 34) To properly compact a specimen for ARDOT quality control/acceptance testing, the gyratory must be set to compact to the ______ number of gyrations shown on the mix design for the mixture.
- 35) Molds and plates must be preheated to the compaction temperature for a minimum of minutes before use and at least _____ minutes between uses.
- 36) The required height of a gyratory specimen is ______ ± 5 mm.
- 37) Asphalt mixtures are placed into a gyratory mold in ______ lift(s).

Bulk Specific Gravity (Gmb)

- 38) The water bath used in AASHTO T 166 is required to have an overflow device to control the water level in the tank and to maintain a temperature of ______ * F during testing.
- 39) When drying back a specimen prior to testing under AASHTO T 166, the maximum allowable temperature is ______ ± 5° F to prevent destroying the specimen.
- 40) Specimens should be cooled to approximately room temperature before testing.True False
- When weighing under water, specimens should be immersed for ______ ± _____
 minute(s) prior to recording the submerged weight.
- 42) Report Gmb to the nearest ______ and absorption to the nearest ______%.
- 43) AASHTO T 166 may only be used for specimens which have ______ % or less absorption.
- 44) For specimens which have more than 2 % absorption, the ______ sealing method or the ______ coating must be used to report the bulk specific gravity of the specimen.

Max. Theoretical SpG (Gmm)

- 45) Samples must be separated during cooling so that there are no fine clumps greater than inch in size so that air is not trapped between particles.
- After weighing the dry sample in air, cover the sample with water and apply a vacuum of
 <u>± 5 mm Hg for</u> <u>± minute(s)</u>.
- 47) During vacuuming, the specimen must be agitated at least every _____ minute(s).
- 48) After vacuuming is complete, the vacuum must be released ______
- 49) After vacuum is released, the vacuum bowl with sample is submerged in the water bath for ______ ± 1 minute(s) and the ______ mass is recorded.
- 50) To obtain the standardized submerged weight of a vacuum bowl, the three submerged weight determinations must not vary by more than _____ g.

Paraffin Coating & Vacuum Sealing Gmb

- 51) When coating a specimen with paraffin, it is important to ensure that the entire surface of the specimen is sealed with paraffin.TrueFalse

Moisture Content of HMA

- 54) The temperature required for drying asphalt for a moisture content determination is the ______ range shown on an ARDOT mix design.
- 55) After weighing, the asphalt mixture is dried for an initial period of ______ minutes.
- 56) Checks are made every _____ minutes until constant mass is achieved.
- 57) Adjust the sample to the ______ temperature before obtaining the final weight.
- 58) Report moisture content of asphalt mixtures to the nearest ______%.

AC Gauge Field Testing

59) Prior to testing, a daily background count must be taken (either ______ or ______ minute count) and the proper ______ activated in the gauge.

- 60) The test times allowed for field testing are _____, ____, or _____ minutes.
- 61) To conduct a field test for binder content using an asphalt content gauge, the sample pans should be filled to within ± ______ grams of the calibration weight.
- 62) Field samples should be tested within ± _____ °F of the calibration temperature.
- 63) The reported % binder is computed by subtracting the moisture content from the gauge reading and then rounding to the nearest ______ %.

Ignition Oven Field Testing

- 64) The standard field operating temperature of the ignition oven is either _____°C or °C based on the _____temperature.
- 65) The ______ mass of the sample is obtained and entered into the ignition oven for computation of the binder content.
- 66) Prior to placing the loaded basket into the ignition oven, the internal scale should be
- 67) The total mass of the basket assembly and sample is used to check the ignition oven scale and must be within ± _____ grams of an outside scale.
- 68) The reported binder content using an ignition oven is obtained by taking the calibrated asphalt content shown on the ticket and subtracting the _____

_____, then rounding the result to the nearest _____%.

69) A sample mass may not exceed the required minimum mass by more than _____ grams.

Ignition Oven – Mechanical Analysis (Gradation)

70) When washing a sieve analysis sample after an ignition oven burn, a

_____ agent is used to assure separation of the finer materials.

71) Required aggregate correction factors are applied ______to rounding for the reported sieve analysis results.

Solvent Wash

72) When performing an ARDOT solvent wash, you must know the _____

content and ______ of asphalt mixture prior to washing with solvent in order to calculate the weight of the ______.

- 73) After solvent washing, the solvent residue must be rinsed from the remaining aggregate with ______ and liquid detergent as needed prior to drying the sample.
- 74) Report the % passing the # 200 sieve to the nearest ______%.

Batching & Mixing

- 75) When batching for calibration samples, all aggregates should be ______ dried.
- 76) Binder may be heated overnight in an oven prior to mixing samples. True False
- 77) The mixing container should be ______ prior to mixing calibration samples to prevent low binder contents in the samples.
- 78) Mix samples at least _____ minutes or until _____ coated.
- 79) After mixing an asphalt specimen, the bucket must be scraped clean until the empty bucket weight is within ± _____ g of the initial weight of the bucket.
- 80) RAP should be added to the aggregate _____ hour before mixing.

AC Gauge Calibration

81) ARDOT 449A requires a minimum of ______ wet points during calibration; a ______% point, an optimum % binder point, and a ______ % point for all

calibrations.

- 82) Sample pans of an AC Gauge are loaded in _____ layers (lifts).
- 83) The dry point is used for determining the ______ weight.
- 84) All calibration times, including the background count, should be ______ minutes.

Ignition Oven Correction Factors

- 86) Ignition oven binder correction factors are obtained by testing two samples at the ______ binder content found on the ______
- 87) If two calibration samples differ by more than _______%, then two more samples must be burned at the same temperature for the calibration.
- 88) If the calibration factor determined is greater than ______% at 538 °C, then the calibration temperature is lowered to ______ °C and the procedure is repeated.

89) Aggregate correction factors are always applied to all sieves. True False

Compaction and Rolling Patterns

- 90) The purpose of a rolling pattern is to determine the ______ of passes required to achieve ______ with the onsite
- 91) When establishing a rolling pattern, ______ second tests are conducted and each ______ density reading is recorded.
- 92) The breakdown roller typically operates in _____ mode, while the finish roller operates in _____ mode.

Sampling Cores / Density

- 93) When transporting cores, the cores should be ______ and protected from ______ temperatures.
- 94) After cutting a core, the core hole should be filled with ______ mix.
- 95) Report % density to the nearest ______%.
- 96) According to ARDOT specifications, tests for mat density of an asphalt pavement should not be taken within ______ feet of the pavement edge.

Joint Densities

- 97) Joint density cores shall be ______ inches in diameter.
- 99) Joint density cores for wedge joints should be cut centered over the ______ width.
- 100) The longitudinal joint between a shoulder and travel lane is subject to joint density testing. True False